
Chances are that if you work in or around IT you have probably heard
of Agile Development. You may have direct experience of working
with it on a project, or you may only know the name, but it’s hard to

deny that it’s an increasingly popular and prevalent means for IT and business
teams to collaborate to deliver change.

Agile Development
Breaking some myths of the cult of Agile

Agile is a delivery framework that promotes collaboration
between development and functional teams for the early and
continuous delivery of valuable software. The Agile Manifesto,
which sets out the values and principles of Agile working, was
created in 2001 by a group of software engineers frustrated
by the long lead times and process overheads of traditional
“waterfall” delivery methods. As an alternative, they proposed
a framework that embraces iterative, incremental software
development.

An Agile project has some quite different features from that
of a waterfall project. Users and developers will co-locate
for much if not all of the project. Change will be encouraged,
even quite late in the development. The team may produce
little formal documentation (relying on interaction instead)
and working software will be demonstrated on a regular basis
throughout development. These features are all geared to

being responsive and adaptive to changing business situations
and ensuring technology directly supports rather than hinders
business goals.

But Agile is not in itself a panacea; it requires strong and
experienced team members working with great discipline
to really get the most out of it. Too much focus on tangible
software development rather than planning and management
means there can be risks of unconstrained scope inflation,
budget overruns and delivery delays

Over the last eleven years, Agile has progressed to develop
a cult following amongst the developer community; which
has driven its adoption in many organisations with varying
degrees of success. In this article, we look at some of the
myths surrounding Agile and highlight some of the key lessons
learned from our experience.

unspun26

Myth 1: Agile is applicable for all software projects

Undoubtedly some of the principles of Agile can be beneficial
across the vast majority of IT projects – start testing and
integrating as early as possible; involve business SMEs and
senior users throughout the course of the project and don’t
create reams of bureaucracy for minor changes – but these
principles are not exclusive to Agile and are part of good
project management on any project.

If you can answer ‘Yes’ to the following questions, then it
may be that Agile would be suitable for your project and
organsation:

•	 Can the requirements be prioritised into a minimum subset

for launch?

•	 Is there a level of novelty to the requirements?

•	 Can subsets of the code be demonstrated easily during the

course of the development?

•	 Does the development have a fixed timescale?

•	 If you are using a 3rd-party to develop the solution, are

youflexible on either scope or cost? Agile really does not

lend itself to fixed scope, fixed price…

•	 Is there commitment to provide significant senior business

user involvement, on-site with the delivery team, every

week throughout the project?

•	 Does the team include significant Agile experience and

expertise? If your team only has the checklists and a few

Agile training sessions under their belt, then they are not

ready to tackle a mission-critical, must-have project… It will

be very likely that they fail to deploy Agile correctly and

potentially fall back into old habits. Use experienced people

- and gain that experience on ‘safe’ projects.

•	 Will users and developers be able to define requirements

interactively?

•	 Can the organisation’s release management approach accept

frequent delivery of incremental steps?

If you answered ‘no’ to more than a couple of these, then
we would recommend that it may be better to continue
with a traditional methodology, perhaps cherry-picking agile
techniques where appropriate.

Myth 2: Agile means that you don’t need a
Project Manager… or a plan
Blind adherence to Agile principles can be a license for chaos.
Some Agile ‘fundamentalists’ will argue that you don’t need
plans and project managers if you have the right developers.
We disagree.

It is essential within an Agile delivery to have strong
risk management controls. One of the biggest and most
fundamental risk management controls is to have a plan.

Within any project the primary variables are scope, quality,
cost and time - Agile projects will tend to vary scope to
a higher degree than cost or time. A project manager is
required to manage these variables, to ensure overall scope
control and to define and manage a plan that delivers within
the time and budget allocated. This is not withstanding

key activities such as managing quality, risks, stakeholder
communications and, if applicable, vendors.

The scale and complexity of the project will determine what
level of experience the project manager will require and
whether they are full or part-time. It is possible that the
project manager has dual roles in the project, but this decision
should not be taken without assessing and managing the
potential risks.

Our view would be, for any Agile project, to ensure that there
is a ‘fit for purpose’ set of risk management controls in place,
including a project plan, with a Project Manager appropriately
experienced and resourced to co-ordinate and manage the
project.

unspun26

Myth 3: Agile means you don’t need to define
requirements, common designs and standards until
late in a project, or even at all!
A good principle in Agile development is to understand the
minimum set of features with which you could go live in your
first release – Agile terms this the ‘minimum marketable
release (MMR)’. As a rough rule of thumb, around 60% of
the available development effort should be spent delivering
these. The remaining 40% of development capacity should
be available as either contingency (worst case) or to include
additional functionality.

Central to this principle is that you need to understand the
complexity and volume of your requirements. Failure to
perform a high-quality detailed requirements exercise can
result in your MMR being based on a set of user requirements
(or ‘user stories’) that are either low quality or not fully
broken down. This can then cause slower development due
to rework or the nightmare scenario where your backlog
of requirements is growing faster than your developers are
coding. Indeed we’ve heard of scenarios where the volume of
user stories has more than doubled during the development

phase; suddenly that 40% contingency doesn’t look so large...
We’d recommend validating that your requirements are fully
decomposed by defining and agreeing both the high level User
Interface wireframes and the acceptance criteria before the
iterative development ‘sprints’ begin.

As well as detailed requirements, the application development
is dependent on key preparatory work that should be
completed before commencing development. This should
include the solution and architecture designs and functional
and technical standards and guidelines. If appropriate,
major integration components (for example web services)
should also be prioritised to avoid delays to the application
development.

In our experience, completing these preparatory steps is
important to ensuring efficient and high-quality coding and
reducing the risk of rework or significant expansion in the
volume of work.

Backlog The ‘User Stories’ (see definition below) that the team will work on in the future, but that have
not yet been prioritised for delivery

Burn up Charts A means of tracking progress. Typically captured as a graph showing the percentage of User
Stories completed

Iteration A finite period (typically between 2 and 4 weeks) during which a subset of software is created

MMR/MMF Minimum Marketable
Requirements/Features

The minimum set of features with which you could go live in your first release

Story points A metric in Scrum used to size and estimate Agile projects in terms of units of scope rather
than hours/days

Scrum The most widely recognised application development framework within Agile

Sprint The “Scrum” term for a software development Iteration

User Stories A way of defining the functionality required of a system, expressed in language that is clearly
and simply understandable by the end user of that system

Waterfall A traditional software delivery methodology that prescribes containment of activities into
contiguous and non-overlapping phases that must be completed before the next can begin (e.g.
analysis, design, build, test)

Wireframes “Blueprints” of the pages of a website, illustrating their contents and functions

	

	

Jargon Buster
Below are some of the key terms used by Agile methods. This list is by no means comprehensive

unspun26

Myth 4: Agile is lower risk
If deployed correctly, Agile can significantly lower the overall
risk of a project and improve stakeholder satisfaction. An
Agile project will start to build risky aspects of the solution
early – giving more time to react to problems.

It will also flush out missed or misrepresented requirements
through regular user demonstrations that might otherwise
have remained hidden until a User Acceptance Test phase; but
it inevitably introduces new risks.

There is an assumption that Agile improves transparency and
communication across stakeholders; but there is also the risk
that functional teams operate in silos or agile newcomers
don’t really understand the new terms either performing
inefficiently or reverting to old habits.

The key here is often experience. Our recommendation
would be that if you are deploying Agile for the first time
then don’t put it on a critical and complex delivery; test it on
something smaller first and build some lessons learned within
your organisation.

Myth 5: Collaboration tools mean everyone
doesn’t need to be in the same location
Fundamental to Agile is the close interaction between
the senior users / subject matter experts and the delivery
team. This will always work best when the teams are onsite
together. Collaboration tools can be used to complement this
face-to-face time, but if they are a substitute for it then there

will be an impact on efficiency. This should be factored into
the plans and, wherever possible, mitigated. We would always
advise to have these teams in the same location, as a minimum
2 days per week.

Summary
In conclusion, Agile can really enable your IT projects to deliver business results more responsively and more quickly, but beware
some of the more wild promises of what Agile will enable you to do. It does not negate discipline and rigorous management. If
you’re thinking about using Agile on your projects, we would recommend the following:

•	 Be clear whether Agile is right for your project;

•	 Assign a project manager and ensure they define and monitor

the project against a plan

•	 Complete detailed requirements and common design

elements ahead of commencing application development

•	 Ensure your team has the necessary experience and

understanding before using Agile for the first time.

•	 Don’t apply Agile mechanically; tailor it for your project

and use on-going risk management controls including self-

examination at an individual and group-level.

•	 And finally, Agile is for software. Don’t forget about change

management, training, communications and documentation!

To read more about Berkeley’s
IT work, visit our website

http://www.berkeleypartnership.com/articles/
it-outsourcing-consulting

http://www.berkeleypartnership.com/articles/it-outsourcing-consulting
http://www.berkeleypartnership.com/articles/it-outsourcing-consulting
http://www.berkeleypartnership.com/articles/it-outsourcing-consulting

